近期,秦皇岛首秦金属材料公司提出了一个提高建筑用钢板屈强比的方法,取得了明显效果。这个方法的要点是:对终轧后的钢板不是直接进入层流冷却,而是冷待至共析转变温度以上某个温度。实验证明,如果冷待的温度取得合适,就可以在提高抗拉强度的同时降低屈强比。他们以Q345ZNb钢坯为试验材料(0.16C、0.36Si、1.37Mn、0.006S、0.06P、0.026Nb,余量Fe),终轧后(终轧温度为850℃),冷待至770℃再进入层流冷却。对比检测表明,采用新工艺的材料与终轧后直接进入层流冷却的材料相比,抗拉强度由原来的575MPa提高到585MPa,而屈强比由原来的0.765降低到0.739,实现了在保证强度的同时降低屈强比的目的。
据研究,上述效应的产生,可能出于以下原因,终轧后直接进入层流冷却的钢板,保留了更多的奥氏体形变时产生的畸变能,使铁素体的形核率增加,晶粒细化,但晶粒大小不均,小晶粒所占比例较大,6.15μm以下的晶粒占35%左右;而冷待至770℃的钢板,由于奥氏体变形后在高温区停留时间较长,奥氏体形变储存能释放得较多,故奥氏体向铁素体转变的驱动力变小,使铁素体形核率降低,铁素体晶粒尺寸变大,但晶粒尺寸大小均匀,珠光体尺寸变化不大;另一方面,在冷待过程中,碳在铁素体与奥氏体之间重新分配,流向奥氏体,造成高碳浓度的奥氏体,在随后的珠光体转变中形成硬度更高,形变强化能力更强的珠光体。由于作为硬相的珠光体决定材料的抗拉强度,所以珠光体强度的提高导致材料的抗拉强度提高;而作为软相的铁素体决定材料的屈服强度,铁素体晶粒尺寸变大导致屈服强度有所下降。这样就在提高抗拉强度的同时拉开了抗拉强度与屈服强度的幅度,实现了屈强比的下降。
应该指出,如果冷待温度过低,会使晶粒尺寸长得过大,同时奥氏体的碳浓度下降,其结果虽然可以使屈强比进一步下降,但抗拉强度也明显下降。比如,冷待至730℃的试样屈强比为0.724,但抗拉强度为539MPa。
博一网是深圳市博一建材有限公司运营的一个集建材网站建设、建材SEO优化、建材SEM营销和线上线下互动营销与传播的一个家居建材+互联网+家装的应用场景,详情敬请登陆http://m.bo-yi.com/